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TEXTBOOK MULTIGRID EFFICIENCY FOR THE INCOMPRESSIBLE 
NAVIER-STOKES EQUATIONS: HIGH REYNOLDS NUMBER WAKES AND 

BOUNDARY LAYERS 

JAMES L. THOMAS*, BORIS DISKINt, AND ACHI BRANDT* 

Abstract. Textbook multigrid efficiencies for high Reynolds number simulations based on the incom- 

pressible Navier-Stokes equations are attained for a model problem of flow past a finite flat plate. Elements 

of the Full Approximation Scheme multigrid algorithm, including distributed relaxation, defect correction, 

and boundary treatment, are presented for the three main physical aspects encountered: entering flow, wake 

flow, and boundary layer flow. Textbook efficiencies, i.e., reduction of algebraic errors below discretization 

errors in one full multigrid cycle, are attained for second order accurate simulations at a laminar Reynolds 

number of 10,000. 

Key words, incompressible Navier-Stokes equations, textbook multigrid efficiency, distributive relax- 

ation, defect-correction iteration 

Subject classification. Applied and Numerical Mathematics 

1. Introduction. In the mid-70's, Beam and Warming [1] presented an implicit scheme for the com- 

pressible Navier-Stokes equations which had a significant impact on the field known as Computational Fluid 
Dynamics (CFD). The method they presented, based upon a spatial factoring of the implicit equations in 

delta form, used alternating tridiagonal line relaxations to solve high Reynolds number viscous simulations. 

This method proved to be much more efficient than other approaches. The basic methodology is still widely 
used and has been extended to very general applications across the Mach number range, forming the foun- 

dation for many general purpose solvers worldwide, among them ARC3D [8] and CFL3D [7] at the NASA 

Ames and Langley Research Centers, respectively. This seminal contribution of Beam and Warming was a 
critical building block to the acceptance of CFD using Reynolds-Averaged Navier-Stokes (RANS) solvers by 
the aircraft industry. Today, computational methods for the cruise shapes of transport aircraft, designed 

to minimize viscous and shock wave losses at transonic speeds, are reasonably well in hand. Simulations of 
off-design performance, involving unsteady separated and vortical flows with stronger shock waves, require 

significantly greater computing resources; this requirement limits further inroads into the design process with 

CFD. 
As a typical example of current RANS capability, the CFL3D code is based on the spatially-factored 

scheme of Beam and Warming and uses multigrid to accelerate convergence to steady state; using alternating- 

line implicit block 5x5 matrix solutions, approximately 200 updates are required to converge the lift and 
drag to one percent of their final values for wing-body geometries near transonic cruise conditions. Complex 
geometry and complex physics simulations generally require many more residual evaluations to converge, and 

sometimes convergence cannot be attained. Now, it is well-known for fully elliptic problems that solutions 
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can be attained using a full multigrid (FMG) process in far fewer, on the order of 2-4, residual evaluations. 

Optimal convergence is denned by Brandt [2, 3, 4] as textbook multigrid efficiency (TME), meaning the 

solutions to the governing system of equations are attained in a computational work which is a small (less 

than 10) multiple of the operation count in the discretized system of equations. Thus, there is a potential 

gain of more than two orders of magnitude in operation count reduction if TME could be attained for the 

RANS equation sets. The principal difficulty stems from the fact that the RANS equation sets are a system 

of coupled nonlinear equations which are not, even for subsonic Mach numbers, fully elliptic, but contain 

hyperbolic factors. Brandt [4] has summarized the progress and remaining barriers to achieving TME for 

the equations of fluid dynamics. 
The purpose of this paper is to present a multigrid method which attains textbook efficiencies for one 

of the most basic simulations encountered in fluid dynamics - the incompressible viscous flow past a finite 

flat plate at high Reynolds number. The flow, although relatively simple, contains several basic elements of 
the barriers to be overcome in extending textbook efficiencies to the compressible RANS equations, namely 

entering flows, far wake flows, and boundary layers. A central element of the multigrid method presented 

is the decomposition through distributed relaxation [3] of the the system of equations into separate, usually 
scalar, factors that can be treated optimally, i.e., through marching for the hyperbolic factors and through 

multigrid for the elliptic factors. Although we restrict ourselves to incompressible flow, the procedures carry 

over directly to the compressible flow case, at least for subcritical flow [3, 4, 10]. 

2. Governing Equations. The equations considered here are the steady, incompressible Navier-Stokes 

equations in nonconservative form, i.e., two momentum equations and the continuity equation, 

r(q)=£q = 0, (2.1) 

expressed in terms of primitive (velocities and pressure) variables q = (u,v,p)T, where 

\ Qv     0     dx~\ 
£ = I    0     Qv    dy   I . (2.2) 

dx    dy     0 

The operator Qv represents convection and diffusion effects as 

QV = Q- i/A, (2.3) 

where Q = udx + vdy, the Laplacian operator is A = dxx + dyy, and the kinematic viscosity is v = 1/Re, 

where Re is Reynolds number.  Extensions to conservation law form for the momentum equations and to 

inclusion of the energy equation are possible, but not considered here. 

The determinant of the matrix of operators, 

|£| = -g„A, (2.4) 

corresponds to an elliptic factor, represented by the Laplacian, and a convection-diffusion factor, gener- 

ally recognized as the convection and diffusion of vorticity along a streamline. For high Reynolds number 
simulations, there are two important scales: the viscous scales in the thin viscous layers near bodies and 



in their wakes and the inviscid scales, which predominate over most of the flow field. For the numerical 
calculations below, the thin-layer approximation, in which only the viscous terms associated with variations 

in the coordinate normal to the body are retained, is used. 

3. Multigrid Method. The present approach uses a full multigrid (FMG) algorithm [2, 3], proceeding 

from the coarsest grid to finer grids. The solution is interpolated from the current grid to the next finer 

grid. The goal of the algorithm is fast reduction of the algebraic errors below the discretization errors on a 

given grid, before moving to the next finer grid. The algebraic errors of the discrete equations on a given 

grid are reduced through a Full Approximation Scheme (FAS) [3] multigrid scheme, in which corrections to 

the nonlinear equations are obtained from coarser grid solutions. The scheme is described below by means 

of a two-grid notation, in which the fine grid is denoted by superscript h and the coarse grid by superscript 

2/i. 

The steady-state residual operator to be solved on the fine grid is the discrete version of Eq. (2.1), 

rh(q'1) = 0. (3.1) 

The initial fine-grid approximation qh is prolonged from the coarse-grid solution q2ft, as 

qh^_rq2h (3 2) 

where V denotes a prolongation operator. After relaxation(s) of the fine-grid operator to obtain an approx- 
imation qh, the coarse-grid equation at level 2h to be solved for a correction to the fine grid is 

v2h{q2h) = v2h(Jlcih) - TZrh(qh), (3.3) 

where 71 denotes a restriction operator for transfer of information to the coarser grid and the tilde superscript 
denotes a most recently available value. This coarse grid equation is then solved by some iterative method 

(or directly if the grid is coarse enough). The correction from the coarse grid (grid 2h) is prolonged to the 

finer grid as 

qh <_ qh + p(q2fc _ ftqfc) (3.4) 

The restrictions "R. used here are volume-weighted for the continuity equations; for the momentum equations, 
the coarser cell values are found by volume-weighted restrictions in the direction parallel to the cell interface 

along with full-weighted restrictions in the orthogonal direction, i.e., for they—momentum equation, volume- 

weighted horizontally and full-weighted vertically. The prolongations V are bicubic interpolations from 

coarser meshes for both the solution and the correction , although results with linear interpolations were 

nearly identical. The FAS cycle described above is used extensively in current Euler and Navier-Stokes 

solvers. The algorithm is critically dependent on the choice of relaxation operator; distributed relaxation is 

used here as described subsequently. 
The coarse-grid equations are themselves solved with 7 cycles of the algorithm applied recursively, where 

7=1 would correspond to a V-cycle and 7 = 2 to a W-cycle; the number of relaxations on the downward 

and upward legs of the cycle are denoted as (v\,v%).   We use here (1^1,^2) = (2,1) and a variant of the 
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FIG. 3.1. Schematic of the FV-cycle for 4-level multigrid where VQ denotes the number of relaxations on the coarsest mesh 

(0,8h). 

V-cycle, termed an FV-cycle, in which the initial approximation to the correction on the 2h grid is obtained 

through a FMG process. The cycle is sketched in Fig. 3.1; the amount of additional computational work 

compared to a standard V-cycle is small, in the ratio of 8/7 in the limit of an infinite number of levels in two 

dimensions. For the simulations here, six levels were used wherever possible. The notation FMG-n denotes 

an FMG cycle with n FV(2,1) cycles at each level. 

4. Distributed Relaxation. Away from boundaries, the correction Sq to the current approximation 

q, introduced at the stage of distributed relaxation, [2, 3] is calculated from 

LSq = -r(q), (4.1) 

where L is a principal linearization of £, in which the coefficients u and v in Eq. (2.3) are evaluated from 
the current approximation and fixed throughout the relaxation. Note this is not a Newton linearization; 

only the principal terms at the viscous and inviscid scales are retained. The distributed relaxation method 
replaces Sq by M5w so that the resulting matrix LM becomes a diagonal or lower triangular matrix, as 

LMiSw = -r(q). (4.2) 

The diagonal elements of LM are composed ideally of the separate factors of the determinant of the matrix 
L and represent the elliptic or hyperbolic features of the equation. For incompressible flow, the distribution 

matrix M can take on a particularly simple form, as determined by the cofactors of the third row of L 

divided by their common factor, as 

M = 
i  o  -dx 

0 1 ~dy 

0   0    Qv 

(4.3) 



yielding 

1  Qv 0 0 
LM = 1    ° Qu 0 

dx dx -A 

(4.4) 

The determinant of the operator matrix LM, 

\LM\ = -QlA, (4.5) 

corresponds to an elliptic factor and two convection-diffusion factors; the additional term over Eq. (2.4), Q„, 

indicates that as a set of new variables, <5w would generally need additional boundary conditions all around 

the boundary (or, just at inflow in the case v = 0). Brandt termed the variables <5w as "ghost variables," 

since they need not explicitly appear in the calculations; here, they do appear in the calculations, although, 

as with the original intent, the boundary conditions are derived from the original primitive variables. The 

equations to solve for the ghost variables are given explicitly as 

Qu6wx = -ri, 

QuSw2 = -r2, 

ASw3 = +r3 + dx5wi + dySw2. 

(4.6) 

Near boundaries, the general approach, [3, 4] would be to relax the governing equations directly, since 

the equations do not necessarily decouple near boundaries as they do in the interior of the domain. One 

can make more general, but possibly slowly converging, relaxations, such as Kaczmarcz relaxation, in this 

region. This will not affect the overall complexity, because the number of boundary points is negligible in 

comparison to the number of interior points. Here, however, we use an approach which applies the interior 

distributive relaxation operator also at the boundaries, inferring boundary conditions for the ghost variables 

based on the boundary conditions of the governing equations. The cost is that the correction equations, 

Eq. (4.6), no longer assume a triangular form, requiring a block matrix solution at the boundaries rather 

than the scalar solutions attained away from the boundary. Assuming linearized flow, the appropriate ghost 

variable boundary conditions at the differential level are derived for inviscid inflow and outflow in Appendix 

I and tangency in Appendix II. These boundary conditions are implemented discretely at the corresponding 

boundaries. At the no-slip boundary, the corresponding discrete boundary conditions for the ghost variables 

are constructed in Appendix III. The procedure is effective for the simulations considered here; details are 

given in subsequent sections. 

5. Defect Correction Relaxation. Since Eq. (4.2) is written in delta form, it is natural to consider 

defect correction for the update, namely a lower-order discretization of the left side of Eq. (4.6) in order 

to simplify the construction and reduce the bandwidth of the implicit operator. Here, we use a first-order 

upwind discretization for the convective part of the convection-diffusion operator, Q„, in Eq. (4.6). The 

distributed relaxation operator can thus be written as 

[LM]d<5w =-rt, (5.1) 
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FIG. 6.1. Variable description for a grid of JxK = NxxNy points. 

where the subscripts t and d denote some desired "target" and "driver" schemes on the right and left sides, 

respectively, of the equation. 
For hyperbolic equations, the initial convergence of defect correction may be slow for certain, not nec- 

essarily high, frequencies [9, 10, 6]. For a target second-order upwind-biased discretization corresponding 

to K — 0, defined subsequently, the asymptotic convergence rate is approximately 0.5 per defect-correction 

iteration. Thus, it is well-matched with the convergence rate of 0.5 per relaxation expected for the elliptic 

parts of the operator with Gauss-Seidel relaxation. 

Defect correction is implemented in the multigrid algorithm as follows: any discrete evaluations of 

the residuals of Eq. (3.1) (including residuals transferred to the coarse mesh) are done with the target 

discretization and any updates via distributed relaxation are done with the driver operator, which is first- 
order upwind for convection. This is similar to the "double-discretization" approach of Brandt [3] in practice, 
except that the target residual is evaluated on all of the meshes, including the finest mesh. 

6. Numerical Discretization. 

6.1. Spatial Discretization. The staggered-grid discretization used here, as shown in Fig. 6.1, is usual: 

p defined at the cell-centers of the grid, u defined at the cell interfaces tangent to the y— or k—direction, and 
v defined at the cell interfaces tangent to the x— or j—direction. Additional values of v and p are defined 

at inflow and outflow boundaries in order to accommodate boundary conditions, defined subsequently. The 

discrete scheme with such a staggered-grid arrangement of variables can be described as 

h„h _ Lftq' 
Qi 0 dh* 
0 Qh

v d* 

dh
x dh

y 0 

(6.1) 



where d£ and dy are generally distance-h central differences on the staggered grid. The operator Qji is 

composed of convection and diffusion elements, analagous to Eq. (2.3); the diffusion elements are treated 

with central differencing, 

\°yyu)j,k - 77"!—L~77~~\ 7h~\ >' *■     > {n.y)j,k    {hy)j,k+i/2        {ny)j,k-i/2 

where hy denotes grid spacing in the y direction. 

The discrete convection operator Qh is upwind-biased, of either the standard upwind differencing (SUD) 

type or the narrow upwind differencing (NUD) type. The operator can be denned on a uniform grid in terms 

of translation operators lfm and Tfc
±m, (T^u^k = Uj±m,k). The SUD scheme can be defined as 

Qh = p.D(T°9n(u)) + M.D(T°gn(-v)) (6.3) 
tlx ily 

where hx is the grid spacing in the a; direction, the sign function sgn is defined as 

f +1    if: 

= *   -1    if: 

Fa;>0, 

sgn(x) = I   — 1    ifa;<0, 

\ 0      otherwise, 

and D is defined as 

D(z) = c-2z~2 + c-iz'1 + co + cxz
+1. 

The NUD scheme can be defined as below for j^ > jp, 

Qh = (M _ M)£)(j,s9n(")) -)- Mö(rS9nWT?9"'u') (6.4) 
flx        ily My 

and as below for jp < jp, 

Qh _  \u\ j-j/rpsgnju) j,sgn{v)s   ,   /]£[ _  \u\ \j-)frpsgn{v)x /g gs 

%y 

For uniform meshes or meshes in which the stretching ratio is ß = 1 + 0(h), «—schemes of at least second 

order accuracy (SUD-2 and NUD-2) are defined for K € [-1,1] as 

{c_2, c_i, co, ci} = 2 {1 - K, 3K - 5, 3(1 - K), 1 + «} 

and third-order accuracy (SUD-3) is attained for K = 1/3 with uniform meshes or meshes in which the 

stretching ratio is ß = 1 + 0(h2). On stretched grids, the reference meshsize, /ij_i/2, appearing in (the 

denominator of) the discrete one-dimensional convection operator, £>(Ti)//ij_i/2, is a meshsize upstream of 

the i-th node where the discrete operator is defined. The coefficients for the first-order upwind schemes 

(SUD-1 and NUD-1) are 

{c_2,C_i,Co,Ci} = {0, -1, 1, 0}. 



TABLE 7.1 

Errors in u with the FMG-1 cycle for entering flow using a second order accurate discretization of the continuity equation; 

t=0.5. 

Scheme h IMI :u IMI/IMI :u 
SUD-1 1/16 0.115556x10° 0.019 

SUD-1 1/32 0.664116X10-1 0.008 

SUD-1 1/64 0.357011X10"1 0.006 

SUD-1 1/128 0.185119X10-1 0.002 

NUD-1 1/16 0.476075X10-1 0.007 

NUD-1 1/32 0.246260X10-1 0.008 

NUD-1 1/64 0.125445X10-1 0.006 

NUD-1 1/128 0.633386xl0-2 0.003 

SUD-2 1/16 0.689001xl0~2 0.024 

SUD-2 1/32 0.154126xl0-2 0.039 

SUD-2 1/64 0.368421xl0-3 0.034 

SUD-2 1/128 0.905679xl0-4 0.026 

NUD-2 1/16 0.251242xl0"2 0.128 

NUD-2 1/32 0.637956xl0~3 0.046 

NUD-2 1/64 0.159458xl0-3 0.046 

NUD-2 1/128 0.397594xl0-4 0.047 

TABLE 7.2 
Errors in u and v for entering flow with a fourth order accurate discretization of the continuity equation; t=0.5. 

Scheme h IMI :w IMh« 
SUD-3 1/32 0.325327xl0-3 0.182866xl0-3 

SUD-3 1/64 0.425745xl0-4 0.231228xl0~4 

SUD-3 1/128 0.547187xl0"5 0.292787xl0-5 

NUD-2 1/32 0.121481xl0~3 0.591146xl0-4 

NUD-2 1/64 0.151229xl0-4 0.724727xl0-5 

NUD-2 1/128 0.186856xl0-5 0.885510xl0-6 

6.2. Gauss-Seidel Line Relaxation. The equations for <5w are relaxed with a line-y Gauss-Seidel 

algorithm marching from the inflow to the outflow boundary. The correction equations for <5w are solved 
implicitly because of the highly stretched mesh used for the viscous calculations. Since the thin-layer ap- 

proximation is made for the viscous terms, the convective operator is first-order upwind, and there is no 

streamwise reversed flow, the Swi and S1U2 correction (driver) equations of Eq. (4.6), corresponding to the 
linearized momentum equations at given pressure, are solved exactly. The line-y solutions require only in- 
versions of tridiagonal (rather than block-tridiagonal) matrices, since the equations for Sw form a lower 

triangular set except near the boundaries. The treatment at boundaries requires special consideration as 

discussed subsequently. Note that for the NUD schemes in inviscid flow with ^ < h' *^e tridiagonal 
equations for 5w\ and 5w2 reduce to diagonal equations. 
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FIG. 7.1.  Maximum residual and algebraic-to-discretization errors in u versus multigrid cycle for the three finest grids 

with the NUD-2 scheme. 

7. Entering Flow Simulation. The flow field upstream of an external aerodynamic simulation is 

basically inviscid. Brandt and Yavneh[5] considered multigrid solutions of such flows and showed the accuracy 
of the coarse grid correction to be critically dependent on the alignment of the flow relative to the mesh. Their 

numerical results indicated the necessity of W-cycles to converge the algebraic errors below discretization 
errors in the FMG-1 cycle. We revisit these simulations below with slightly different boundary conditions 
and show that the FMG-1 cycle with the use of FV-cycles is sufficient. The computations were done for 
a square domain with periodicity in the y-direction on a uniform mesh. Inflow boundary conditions were 

specified velocities as 



w(0,y) = l + 0.5cos(27ry), 

v{0,y) = tu{0,y), (7-1) 

with constant pressure at the outflow boundary. The tangent of the angle of the flow relative to the grid 

is t = 0.5, corresponding to the maximum value studied by Brandt and Yavneh[5]. The exact solution 

corresponds to convection along a streamline at constant pressure, 

u(x,y) = 1 + 0.5cos(27r(y - tx)), 

v{x,y) =tu(x,y). (7-2) 

The boundary conditions for the correction equations are implemented by applying the distributed 

relaxation equations 6q = M<5w at the boundary along with a Dirichlet condition for {6w)3 at inflow. The 

resulting discrete boundary conditions at x = 0 are 

5w2 = 0, 

6w3 = 0, 

6wx = d*(Sw3). (7-3) 

This boundary condition is the discrete equivalent to the original problem statement for the constant coef- 

ficient problem. This boundary condition couples the 5wi and <5w3 equations together at the line of cells 
adjacent to the inflow boundary, necessitating a block 2x2 block matrix solution procedure; away from this 

first line, the equations retain the triangular form of Eq. (4.6) and can be solved as scalar equations. The 
downstream boundary condition is implemented by solving for Sw3 at the last interior column of cells simul- 

taneously with 6w3 at the outflow column, again necessitating a 2x2 block matrix tridiagonal solution. After 

sweeping through the domain, all of the momentum equation residuals are zero in the constant coefficient 

case; this local block matrix coupling at either boundary eliminates the need for the extra sweep of the 
residual equation advocated by Brandt and Yavneh[5]. The residuals remain non-zero in the general case 

because of subprincipal terms and are restricted to the coarse grids. Enforcing periodicity in the y-direction 
in the tridiagonal solver eliminates the need to consider any special boundary conditions in that direction. 

Special forms for the spatial discretization of the convective operator in Eq. (6.1) at inflow and outflow are 

given in Appendix IV. 
The L2-norms of the discretization errors in u after complete convergence and the ratios of the L2-norm 

of the algebraic errors divided by the L2-norm of the discretization errors after one cycle are shown in 
Table 7.1 for various grid sizes and orders of accuracy. The algebraic errors are reduced substantially below 

the discretization errors in one cycle. The error norms indicate a first order accuracy for SUD-1 and NUD-1, 

and second order for SUD-2 and NUD-2, as expected. 
At this flow angle, t = 0.5, the NUD-2 scheme exhibits third-order accuracy for the linearized convection 

problem but does not for the full Euler equations because second order accurate discretizations are used for 

the continuity equation, for the pressure terms in the momentum equation, and for the reconstruction of 
the flow at an interface. To remedy this, these discretizations were improved to fourth order accuracy; the 
corresponding results shown in Table 7.2 for both the SUD-3 and NUD-2 schemes now exhibit third-order 

accuracy in u and v. 

10 
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FIG. 8.1. Grid used for the wake and finite flat plate simulation. 

TABLE 8.1 

Computed values of centerline velocity at x = 1.5 for the wake simulation; SUD-2 scheme; K = 0; Wd = 0.5; Re = 10,000. 

iV^XNy 

u 
(FMG-10) 

u 

(FMG-1) 

IMI/IMI:« 
(FMG-1) . 

49x25 0.730529 0.730585 0.00445 

97x49 0.740382 0.740412 0.01135 

193 x 97 0.742367 0.742385 0.02672 

The reduction of the maximum residual and the algebraic-to-discretization errors over 4 cycles for the 

three finest grids in the calculation are shown in Fig. 7.1 for the NUD-2 scheme with second and fourth order 

accurate discretizations of the continuity equation. For second order accuracy, the residual and algebraic- 

to-discretization errors are reduced four orders of magnitude over the 4 cycles, close to the theoretical limit 

expected for elliptic equations of (0.5)3 = 0.125 reduction per FV(2,1) cycle. The convergence for the third 

order accurate results deteriorate somewhat to three orders of magnitude over the four cycles but is still 

quite reasonable considering that defect correction with a first-order driver operator is being used. Further 

improvements could be made by additional sweeps or by a predictor-corrector sequence of the momentum 

equations only, since the deficiency resides with the first-order accuracy in the driver operator for convection. 

8. Wake Flow Simulation. The wake and the finite flat plate simulation to follow were computed for 

the computational domain shown in Fig. 8.1 at a Re=10,000 based on the height of the channel. The grid 

was stretched in the y-direction with a stretching factor on a specified mesh defined as 

ßo = {hy)j,k+i/{hy)jtk 

corresponding to (Ny)0 grid points in the vertical direction. The stretching ratio on all other meshes is 

/3 = /3«N„)o-i)/(iv„-i)_ 

Freestream pressure is specified at the outflow boundary; a wake deficit was prescribed at the inflow boundary, 

x = 0, according to 

11 
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(a) Z/2—norm of the residual. 

=   N„xNy 

Cycles 

(b) Algebraic-to-discretization errors in mass flow. 

FIG. 8.2.  Wake simulation convergence using the FMG-5 cycle; u>d = 0.5; SUD-2 scheme; K — 0. 

—Rev2 

u{0,y) = l-wdexp(     ^  ),  v(0,y)=0, 

where Wd = 0.5.   The mass flow is defined as the integral of velocity at constant x; the exact value is 

0.9911377307.   The boundary condition treatments at inflow and outflow are the same as those for the 

12 
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FIG. 9.1. Convergence of the Cf values at x = 1.5 with nominal grid spacing for two stretching ratios; SUD-2 scheme; 

K - 0; Re = 10,000. 

entering flow discussed previously. Symmetry conditions are applied at y = 0 for both q and 5w. A 
tangency condition, v = 0, was applied at y = 1; applying the distribution operator at this point with 

simple reflection for u across the boundary indicates that a Neumann condition can be applied to S1V3 at 
the boundary, as shown in Appendix II, along with reflection for 8wx and a Dirichlet condition for öwz, if 

needed. 
The finest grid considered was A^xNy = 193x97 with ß0 = 1.03 corresponding to (Ny)0 = 97. In 

addition to residuals, the centerline velocity (obtained by second-order extrapolation) and the mass flow 
were monitored at x = 1.5, a location midway in the domain, as a measure of spatial convergence. The 
reductions of the maximum residual and the algebraic-discretization errors in mass flow for all the grids in 

an FMG-5 process are shown in Fig. 8.2 using the SUD-2 scheme. For each of the meshes, the residual is 
reduced 4-5 orders of magnitude and the algebraic errors are reduced far below discretization errors. The 

centerline velocities for the three finest grids, Table 8.1, demonstrate second order accuracy with algebraic 
errors reduced below discretization errors using the FMG-1 cycle. The reference centerline velocity was 

obtained by second order Richardson extrapolation. 

Although not shown, parameter variations in w<j were made which indicated the results were not sensitive 

to Wd over the range investigated, 0 to 0.9. This is in contrast to an earlier application,[10] in which the 

ghost variable equations were solved with a correction scheme (CS) multigrid. Those results deteriorated for 

high values of wd, emphasizing the advantage of applying the FAS multigrid scheme to the whole nonlinear 

system of equations. For linear equations, the performance of FAS multigrid is the same as CS multigrid . 

9. Flat Plate Boundary Layer Simulation. For the flat plate simulation, no-slip conditions are 
prescribed from x = 1 to x = 2 along the lower boundary and symmetry conditions upstream and downstream 

of those points; a wake profile develops downstream of the trailing edge, x = 2. The inflow and outflow 
conditions are prescribed freestream velocities («<*, = 1,««, = 0) and pressures, respectively. The discrete 
velocities adjacent to the plate for y < 0 are required to satisfy the no-slip condition at the plate, i.e. 
u(x,-hy/2) = -u{x,hy/2);v(x, -hy) = -v(x,hy). The distributive relaxation equations applied at the 

boundary are shown in Appendix III. 
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TABLE 9.1 

Computed values of total drag for the finite flat plate simulation; SUD-2 scheme; K - 0; Re — 10,000; ßo = 1-03. 

iVxxNy 

CD 

(FMG-10) 
CD 

(FMG-1) 

IMI/|M|:CD 
(FMG-1) 

49x25 0.011552 0.011753 0.0784 

97x49 0.013492 0.013412 0.1284 

193 x 97 0.013961 0.014051 0.5760 

leading edge 

FIG. 9.2. Pressures (y = 0) for the finite flate plate; Re = 10,000. 

The spatial convergence of the local skin friction Cf midway down the plate versus the nominal grid 

spacing for two families of meshes for two stretching ratios is shown in Fig. 9.1, where 

Cf = 2v(d%u)/u: 2 
oo- 

The two finest grids in each family are 289x145 and 193x97. Second order accuracy is evident; the results 

with higher stretching ratio are slightly more accurate on coarser grids. The results converge to a value 

approximately five percent higher than the Blasius value, Cf = 0.664/v
/ßeJ = 0.00939, where x denotes 

distance from the leading edge, because of the presence of a favorable pressure gradient (accelerating flow) 

over most of the plate, as shown in Fig. 9.2. Convergence of the £,2-norm of the residual and estimated 

algebraic-to-discretization errors in total drag CD are shown in Fig. 9.3. The total drag is defined as 

CD = 2C}{x* - 1) + / Cfdx 
Jx" 

where the Cf behavior ahead of x* — 1.25 is assumed to be an inverse square root behavior in distance from 

the leading edge, as occurs with the Blasius solution. The infinite-grid result is extrapolated using the two 
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10r.    ,     15 
Cycles 

(b) Algebraic-to-discretization errors in CD- 

FIG. 9.3. Errors per cycle using the FMG-5 cycle; ßo = 1.03; SUD-2 schemes = 0; Re = 10,000. 

finest grids. Both the residual and algebraic-to-discretization errors are reduced nearly four orders of mag- 
nitude over five cycles for the four finest grids, close to the convergence expected for elliptic equations. The 
CD values on the three finest meshes are given in Table 9.1, confirming that the algebraic-to-discretization 
errors are reduced below unity in a single cycle. The values extrapolate to a slightly larger value than the 

Blasius value, CD = 1.338/y/Re = 0.013280. Velocities normalized to the boundary layer edge velocity, ue, 

versus the scaled normal coordinate, rj, are shown in Fig. 9.4 for the two finest grids in one family; either 

computation is indistinguishable from the Falkner-Skan boundary layer analytic result that accounts for 
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FIG. 9.4. Scaled velocity profiles for the finite plate at x = 1.5; Re = 10,000; i) = (y/x)y/Rex/2. 

streamwise pressure gradient. 
The largest discretization errors as well as the largest residuals occur near the leading edge singularity, 

as can be noted in Fig. 9.2. Although not tried, a local refinement near this boundary would be beneficial. 

10. Concluding Remarks. A multigrid method for solving the incompressible Navier-Stokes equa- 

tions has been applied to a classical model problem of fluid dynamics: flow past a finite flat plate at high 
Reynolds number. Elements of the Full Approximation Scheme multigrid algorithm, including distributed 

relaxation, defect correction, and boundary treatment, have been presented in some detail for the three main 
physical aspects encountered in the simulation: entering flow, wake flow, and boundary layer flow. Textbook 

efficiencies, i.e., reduction of algebraic errors below discretization errors in one multigrid cycle, and residual 
reduction rates approaching the value expected for elliptic equations of nearly one order of magnitude per 

cycle, are attained for second order accurate simulations at a laminar Reynolds number of 10,000. 
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Appendix A. Linearized Euler Equations. 

The linearized Euler equations, 

W q ) = 0, (A.l) 

with periodicity in the y-direction over a finite domain, 0 < x < L, are considered, where q represents a 

perturbation from freestream values. The convection operator is assumed to be constant as 

Q0 = dx + tdy, (A.2) 

where t = Voo/"oo represents the incidence of the freestream flow with the x-axis. The boundary conditions 

are taken as prescribed velocity components at inflow and pressure at outflow, 

( u )_o = ( Uo K-, 
V Vo 

( P )*=L = ( PL )eiay- (A.3) 

Brandt and Yavneh[5] considered entering flow (L —> oo) with inclusion of the first differential approximations 

of the discrete equations to confirm algebraic convergence below discretization error in one FMG cycle, 

neglecting boundary effects. Here, we consider only the differential solution using distributed relaxation, 

q = MOQW, and include boundary effects. Considering w of the form 

( a\ 

w = I   b   I e-axeiuy, (A.4) 

c 

then LOOMQQW = 0 implies 

a + iut 0 0 

0 —a + uot 0 

—a iu -a2 + u2 

1   ( a\ 
II   b   1=0. (A.5) 
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A non-trivial solution (zero determinant) exists for values of a as below, 

a C {iwt, iwt, u>, —u>}. (A.6) 

Thus, the general solution, w = we""", can be written as 

/      0      \ /      1      \ 
w = Si I        1        I e~iutx + B2\        0        I e~iwte 

—i 

w(l+t2) w(l+t2) 

+ B3 I   0   \e~ux + B4 I   0   \e"x, (A.7) 

which requires four boundary conditions to close the system, instead of the three required with the prim- 

itive equations. Applying a Dirichlet condition for w3 at inflow supplemented with the original boundary 

conditions, as below, 

( w\- dx{w3) \ ( u0 \ 

w2 I       = I   «d    ' >" 
W3 x=0 ° 
( Qow3 )X=L = ( PL )eiuy, (A.8) 

the coefficients B\ — B4 can be determined and are given below: 

Bi = v0, 

1     r,. w„     .   „ -uL-l B2 = u0 + — \{tu0 - v0)iD2 + 2pLe 

B4=—l-—l-(tu0-vo)e-2»L-ipLe-»L], (A.9) 
u>Di{t — i) 

where D\ = 1 + e~2wL and D2 = 1 - e-2"'1'. Note that w2 is a function of vo only; «>i is primarily a function 

of UQ but is coupled to v0 and PL through the boundary conditions, Eq. (A.8); the coupling is rather weak, 

however, as it disappears completely for VQ = tuo, as is usually the case, and L —► oo. 
The primitive variables, q = qeswy, can be determined from q = MooW, as below, 

q = 
A     /lX A9

f&^ ^1      .     _■     .  --iwtx   ,   A2   ,      -1 

\ 0 I \   1   I 

A     ^^ 
+ ?|ä   K-, (A.10) 

18 



Ai = u0 + tv0 + -=p [i(tuo - wo) + 2pz,e wZ>], 

i42 = +i(tuo - v0)+PLe~wL, 

A3 = -t(tuo - ^o)e-2wL +PLe_wL, (All) 

It can be verified that the solution above satisfies (A.l) and the boundary conditions (A.3). The boundary 

conditions for w discussed in the main body of the text are discrete forms of the differential boundary 

conditions given by (A.8) above. For the linearized, constant coefficient case considered here, both the 

discrete and differential forms share the property that a solution to the distributed relaxation equations 

with boundary conditions (A.8) satisfy identically the differential equations (A.l) with boundary conditions 

(A.3). 

Appendix B. Tangency. 

The linearized Euler equations, Eq. (A.l), are again considered but with t = 0 (Qo = dx) and with 

periodicity in the s-direction over a finite domain, 0 < y < H. Linearized tangency boundary conditions 

are prescribed as v at the top and bottom of the channel, 

/  v{x,0)  \ ^f v0  \ eiu!X ,R1j 

v(x,H) vH 

Considering w of the form 

/ a\ 

w = I   b   I e-ayeiux, (B.2) 

c 

then LOOMOQW = 0 implies 

[iw      0 0 l/a\ 

I   0     iw 0 I  I   b   | = 0.    • (B.3) 

iw   —a   —a2 +u2 c 

A non-trivial solution (zero determinant) exists for values of a C {w, —w}. 

Thus, the general solution, w = we™, can be written as 

/ 0 \ / 0 \ 

w = Bx\   0   le^ + Sal   0   \e~uy, (B.4) i;r+*i;i 
which only requires two boundary conditions, consistent with the primitive equations; no boundary conditions 

can be given for ioi and w^. Applying a Neumann condition for W3, as below, 

/   (-dy(w3))(x,0)   \ = /  vo  \&iu^ (B5) 

(-dy(w3)){x,H) vH 
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FIG. C.l. Schematic of variables near no-slip boundary. 

the coefficients B\ and B% can be determined and are given below: 

-uiH 

Si 
LJD 

\vH - v0e -u>m 

B2 = —j; [vo - vHe -um 

where D = 1 + e~2uH. 
The primitive variables, q = qeiwx, can be determined from q = M^w, as below, 

(B.6) 

q=Sl 

■iw \ 

iu)   I 

euy + Bx 

( —iu> 

w (B.7) 

It can be verified that the solution above satisfies (A.l) and the boundary conditions (B.l), recovering the 

classical aerodynamic model problem for the flow past a wavy wall. It is clear that wz takes the role of the 

perturbation potential; the Neumann boundary conditions for W3 are implemented discretely at the tangency 

surfaces in the main body of the text. 

Appendix C. No-Slip Boundary. 
The no-slip boundary conditions along the plate in terms of the ghost variables are 

H(je,o) = [fljWfeo). 

[6w1}(xg,0) = [d*(5w3))(xg,0), 

(C.l) 

(C.2) 

where xc denotes the x position of the cell-center for cell (j, k) and xg = xc + |, as in Fig. C.l. Since a 
third boundary condition for the ghost variables is required at the plate, we choose to split Eq. (C.l) into 

two separate equations as 
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[Sw2}(xc,0) = 0, (C.3) 

[d%(6w3)](xc,0) = 0. (C.4) 

At the location (xg, 0), 5wi and öw3 can be approximated in terms of nearby values as 

[5Wl}(xg,0) =\{5Wl\2 + liSwi)^, (C.5) 

'[^(^3)](a:B,0)=^[(5tü3)J-+i,2-(*tü3)il2 (C6) 

+ (JIü3)J+I,I - {Sw3)jil}, 

In relaxing the j"1 column, we assume that (6w3)j+itk = 0. From Eq. (C.4), we also have (Ät«3)j,i = {5w3)jfi- 

Then Eq. (C.2) can be written as 

2 
(<5u>i)j,i = -{Swi)j,2 - r(^3)j,2, (C.7) 

which is an implicit boundary condition equation to be implemented in relaxing Eq. (4.6) at the wall. 

Now assume the convection-diffusion operator is constant, defined with a computational stencil as below, 

T CJV 1 
Qu = I  cw    c0    CE  I • (C8) 

cs 

In a lexicographic pointwise relaxation, the matrix to solve for the (5w)j,2 values is as below, 

co 0 0       V6w2\        fr2\ 

10     co - cs   -2CS/1-1 II  Swi   I  =-l n I   . (C.9) 
1 h-1      h-1 3/!-2     Il  6w3   '.,   l r3 '., 

This system couples the implicit equations for 6wi and 5w3 at the cell adjacent to the no-slip boundary, 

necessitating a local 2x2 block matrix solution. After solving for (Sw)jfi (and thereby (SW3)JII and (öw\)jy\) 

and changing the primitive variables through M<5w, it can be shown that the updated residuals of cell (j, k) 

are zero. For variable coefficients in the convection-diffusion operator, the residuals differ from zero, as they 

do in the interior of the mesh. 

Considering relaxation of the entire column of cells, the implicit equations for the cells away from the 

boundary remain in lower triangular form. Thus, the equations can be solved using an LU decomposition 

with only a small overhead. In this instance, the entire column of residuals are zeroed out for a constant 

coefficient convection-diffusion operator. 

Appendix D. Boundary Stencil Modifications. 

The four-point upwind-biased stencil considered here requires special treatment near boundaries. For 

prescribed velocity boundary conditions at inflow, a modification is required at j = 2 for the x—momentum 

equation and at j = 2 and j = 3 for the y—momentum equation.   For prescribed pressure at outflow, a 
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modification is required at j = Nx for both momentum equations. The simplest approach to maintain 

second order accuracy, used herein for the wake and boundary layer simulations, is to use a first-order two- 

point stencil for these points near inflow and a fully-upwind stencil (K = -1) near outflow. For the entering 

flow simulation, more accurate stencils were used at inflow as shown below; uXtk and v^/2,k represent given 

boundary values at x = 0, as in Fig. 6.1. 

Considering the x-momentum equation, for the SUD-2 scheme, the required term ux is computed using 

nearby points and the gradient at x = 0, i.e., 

(dxu)\h,y =Tr[-5wi,fc + 4«2,fc + «3,fc] 

-\&u)\o,v, (D-l) 

where (h,y) denotes the vertical interface midpoint of the (2,fc) cell and (d£u)|0,y = -(d^v)\oiV is given at 

inflow from continuity, as 

(S»|o,v = 2ift[27u3/2>fc ~ 21v^k~l 

-"3/2,k+l +v3/2,k-2\- (D-2) 

For the NUD-2 scheme, central differencing (K = +1) is used. 

Considering the j/-momentum equation with either scheme, central differencing is used at the j = 2 

column of cells and a third-order 4-point formula at the j = 3 column of cells, i.e., 

(d^v)\h/2lV = ^[-4:Vs/2,k + 3«2,k + V3,k], (D.3) 

(dxv)\3h/2,y = rrr[16w8/2,fc - 45w2,fc 
30/iL 

+ 20u3,fc + 9v4,fc], (D.4) 

where (h/2,y) and (3h/2,y) denote the horizontal interface midpoints of the (2, k) and (3,fc) cells, respec- 

tively. 
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